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ABSTRACT

The ability to simulate tropical cyclones (TCs) realistically is an important factor in the performance

evaluation of climate models. In previous studies, indirect evaluation methods have been proposed that are

based on the comparison of TC-related background circulation between model results and observations.

Direct model evaluationmethods, in most cases, are limited to themodel skill in simulating the TC frequency,

intensity, and track density. Here we propose a newmethod to quantitatively and directly evaluate the ability

of climate models in simulating TC tracks. The method consists of two indicators that account for the model

performance in simulating TC track density and the geographic properties of TC tracks, respectively. This

method is applied to evaluate the skill of climate models in simulating TC tracks over the western North

PacificOcean. The explicit models include seven from phase 5 of the CoupledModel Intercomparison Project

and eight from the U.S. CLIVAR Hurricane Working Group (HWG), as well as four downscaled HWG

models. Our results indicate the order of these 15 explicit models according to their ability to simulate TC

tracks. In addition, we show that, for one of the models, the TC track simulation is greatly improved by using

downscaling.

1. Introduction

Tropical cyclones (TCs) are probably the most dev-

astating of natural disasters, posing great threats to

life and property along their paths (Tonkin et al. 1997;

Henderson-Sellers et al. 1998). With the increase of

horizontal resolution in recent years, climate models

have become a powerful tool to study tropical TC ac-

tivity, and the evaluation of the model skill in simulating

TCs is increasingly important. In many previous case

studies, themodel skill for TC simulations was evaluated

based on a direct comparison between observed and

simulated TC tracks (Landman et al. 2005; Rogers 2010;

Sun et al. 2017). However, this method is not appropri-

ate for evaluating the TC track simulations in climate

models, since climatemodels target the simulation of TC

climatological characteristics rather than simulations of

real TC cases. The purpose of evaluating TC tracks in

climate model simulations is to evaluate the climato-

logical characteristics of the TC tracks such as TC gen-

esis locations, track lengths, and types.

One indirect method to evaluate the model skill of

simulated TC activity is based on the comparison of

observed and simulated circulation backgrounds asso-

ciated with TC frequency (Zhou and Xu 2017; Zhou

2012) or the TC genesis potential index calculated fromCorresponding author: Yuan Sun, sunyuan1214@126.com
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the large-scale environmental fields from models and

reanalysis products (Song et al. 2015). However, these

methods do not consider the simulated TCs per se.

Several previous studies also used statistical analysis

to compare the TCs’ genesis location, occurrence fre-

quency, intensity, and lifetime models and observations

(Camargo et al. 2005; Bengtsson et al. 2007; Zhao et al.

2009). The most common diagnostics of model skill

include a comparison of the number of simulated TCs, as

well as the genesis position spatial distribution of TC

with that of observations, their differences, and/or cor-

relation coefficients (Camargo et al. 2005; Murakami

et al. 2012, 2014; Camargo 2013; Wang and Wu 2015).

TC track density is another important element in eval-

uating the skill of climate models in simulating TCs

(Camargo et al. 2005; Kim et al. 2012; Strazzo et al.

2013), since it contains information on TC frequency,

position, and duration. Some studies considered the

difference in the TC track density between simula-

tions and observations (Strazzo et al. 2013; Shaevitz

et al. 2014; Kossin et al. 2016). Strazzo et al. (2013)

proposed a method to compare a suite of models with

each other and with observations using a hexagon

spatial lattice framework first introduced into TC

studies by Elsner et al. (2012). The hexagon lattice has

the same function as the latitude–longitude grids.

However, although this method is universal and

provides a uniform framework, it evaluates only the

attributes of the TC track that are included in TC

track density without considering the geographical

properties of TC tracks.

The geographical property is an important fea-

ture of the TC tracks. In previous studies, TC tracks

were classified either over a study area that was geo-

metrically divided into several segmentations on the

basis of latitude/longitude or over a study area that was

determined from the spatial distribution of TC oc-

currence (Wu and Wang 2004; Wu et al. 2005). Ob-

jective analysis has also been applied for TC track

classification; for example, Elsner (2003) implemented

the k-means clustering method (MacQueen 1967) to

classify TCs over the North Atlantic. Following that

work, Nakamura et al. (2009) optimized the parame-

ters used in the k-means clustering for storm classifi-

cation by developing a method to distill the track

shape and length using mass moments. Alternatively,

Camargo et al. (2007a,b) classified TCs over the

western North Pacific Ocean (WNP) using a regression

mixture cluster model proposed by Gaffney et al.

(2007). This latter cluster method was used together

with track moments in Nakamura et al. (2017) to an-

alyze WNP model tracks. In Daloz et al. (2015) and

Nakamura et al. (2017), the model skill was evaluated

based on the full TC track, using a regression mixture

cluster analysis to classify observed and simulated TC

tracks. The model’s performance was evaluated based

on the comparison of the cluster memberships be-

tween observations and simulations. However, the

results in the studies were still somewhat qualitative.

Thereby, it is necessary to develop a new method

that can objectively evaluate the ability of climate

models to stimulate not only the TC track density but

also the geographical properties of TC tracks in a com-

prehensive and quantitative way. The aim of the present

study is to propose a new method that can directly and

quantitatively evaluate the performance of climate

models in simulating TC tracks. This new method will

then be implemented to evaluate the TC tracks from

models from phase 5 of the Coupled Model Inter-

comparison Project (CMIP5) (Taylor et al. 2012) and

the U.S. CLIVAR Hurricane Working Group (HWG)

(Shaevitz et al. 2014; Walsh et al. 2015; Daloz et al.

2015; Nakamura et al. 2017).

The paper is organized as follows. Section 2 in-

troduces the data used in the present study. The method

proposed to evaluate model skill in simulating TC tracks

is provided in section 3. A comparison of the simulations

and observations and a quantitative evaluation of the

model skill are presented in section 4. Conclusions and a

discussion are given in section 5.

2. Data

The data used in this study include the TC best-track

data from observations and TC tracks from simula-

tions of seven CMIP5 and eight HWG global climate

models. The TC observations are extracted from Inter-

national Best Track Archive for Climate Stewardship

(IBTrACS), version v03r09, for the period of 1980–2005,

which provides TC position and intensity information at

6-h intervals (Knapp et al. 2010). Similarly, TC model

data used in this study include global TC genesis posi-

tions and tracks obtained from the outputs of CMIP5

and HWG models. Similar to observations, the model

tracks provide information on latitude/longitude of the

TC center, the maximum wind speed, and minimum sea

level pressure. Differences in horizontal resolution

among the climate models are taken into account by

varying the thresholds for the tracking algorithm. De-

tails can be found in Camargo (2013) for the CMIP5

models and Shaevitz et al. (2014) and Nakamura et al.

(2017) for the HWG models. The sensitivity of the

HWG models’ TC statistics to different tracking algo-

rithms is discussed in Horn et al. (2014). The models

included in the present study are listed in Table 1.

The horizontal resolutions of the CMIP5 models are
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typically much lower (i.e., coarser) than those of the

HWG models. More information about the HWG sim-

ulations can be found in various publications from the

HWG, for example, Horn et al. (2014), Daloz et al.

(2015), Walsh et al. (2015), and Nakamura et al. (2017).

In addition to the CMIP5 models and HWG models,

TC tracks produced by a statistical–dynamical down-

scaling method for four HWG models (i.e., DCAM5,

DCMCC, DGISS, and DHiRAM) are also analyzed.

The downscaling technique can be divided into three

steps. First, origin points of the tracks are generated

by a random seeding procedure. The survival of these

seeds depends on the environmental conditions at the

seeding location. Second, the storm movement is de-

termined by the steering winds, with a correction for

the beta drift (Holland 1983; Marks 1992). Third,

storm intensity is determined by a coupled TC in-

tensity model (Emanuel et al. 2004) that is run along

the storm track. Details can be found in Emanuel

(2006) and Emanuel et al. (2006). There are alterna-

tive ways to do each step of the synthetic tracks gen-

eration. For instance, Lee et al. (2018) genesis seeding

is weighed by the tropical cyclone genesis index

(Tippett et al. 2011).

The observations and simulations of CMIP5 models

are analyzed for the period of 1980–2005. Only those

observed TCs that reached the intensity of tropical

storm ($35 kt; 17.85m s21) are included in our analysis.

During this period, the best-track data are considered

to be the most complete with the highest quality in

terms of both storm position and storm intensity as a

result of the monitoring of geostationary satellites

(Knapp and Kruk 2010; Kossin et al. 2014, 2016). The

study period ends at 2005 to match the CMIP5 histor-

ical simulations, which cover the period of 1851–2005.

For the HWGmultimodel datasets, the simulations are

forced with monthly varying climatological sea surface

temperatures (SST); that is, the SST is constant from

year to year. The number of years available is different

for different models (Table 1). Although the SST cli-

matological period (1985–2001) of the HWG models is

not fully consistent with those in observations, it does

not affect the reliability of the main conclusions re-

garding the model performance evaluation in the

present study. As the HWG models are forced by cli-

matological SST, the time-averaged results are also

the climatological mean state of the WNP TC tracks.

For the observations and simulations of CMIP5’s

multiple models, the 26-yr averaged results can be

considered as the climatological mean state of the

WNP TC tracks because the length of the dataset is

longer than the periods of the dominant modes of

natural variability (e.g., El Niño–Southern Oscillation

and Pacific decadal oscillation).

3. Evaluation method

The evaluationmetric is divided into two subindices—

that is, the TC track density simulation index (DSI) and

the index of geographical properties of the TC track

TABLE 1. List of the CMIP5 and HWG models analyzed this study. The columns show the model name, horizontal resolution, model

type (i.e., CMIP5 orHWG), number of simulatedTCs in theWNP, number of simulation years, annualmean number of TCs, andTC track

density simulation index. Here, LR, MR, and HR indicate low, medium, and high resolution, respectively, and DX gives the name of

a downscaled model corresponding to the original model X, e.g., HiRAM and DHiRAM.

Model Resolution (8) Type No. Years Annual No. DSI

CSIRO Mk3.6.0 1.9 CMIP5 459 26 17.65 0.42

CanESM2 2.9 CMIP5 67 26 2.58 0.18

FGOALS-g2 3.0 CMIP5 35 26 1.35 0.18

GFDL CM3 2.5 CMIP5 188 26 7.23 0.29

IPSL-CM5A-LR 3.7 CMIP5 18 26 0.69 0.17

MIROC5 1.4 CMIP5 55 26 2.12 0.18

MPI-ESM-LR 1.9 CMIP5 109 26 4.19 0.25

CAM5.1 HR 0.25 HWG 153 16 9.56 0.41

CMCC/ECHAM5 0.75 HWG 303 9 33.67 0.42

FSU 1 HWG 143 5 28.60 0.41

GFS 1 HWG 118 20 5.90 0.27

GISS 1 HWG 29 20 1.45 0.24

HadGCM3 MR 0.83 HWG 134 20 11.90 0.37

HiRAM 0.5 HWG 677 20 33.85 0.49

MRI 1.25 HWG 441 25 17.64 0.36

DCAM5 — Downscaled HWG 2987 19 32.79 0.52

DCMCC — Downscaled HWG 2858 19 20.84 0.29

DGISS — Downscaled HWG 2799 19 28.50 0.27

DHiRAM — Downscaled HWG 2575 19 30.72 0.30
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(GPT)—that jointly determine the final skill score of a

given climate model.

a. TC track DSI

Only TCs that were active over the WNP region

(08–608N, 1008E–1808) are considered in this study.

This area is divided into 293 39 grid boxes with 28 3 28
horizontal resolution. The TC data at 6-hourly in-

tervals are considered to be independent samples,

and each occurrence of the TC center at a given grid

is considered as one TC exposure. The annual aver-

age TC exposure at each individual grid box is then

calculated.

Suppose that the model-simulated annual mean TC

exposure at each grid box is m and that the observed

exposure is n; both m and n have units of number per

area per year. For the ith grid box, the skill score of the

model can be expressed as

DSI(i)5

�
n/m , if m. n, m. 0

m/n , if m# n, n. 0
. (1)

Here a valid grid box is defined as the grid box in which

there exists either observed or simulated TC exposure.

Many previous studies have applied this method to eval-

uate short-term climate forecasts, for example, in the ap-

plications of the threat score (TS) (Palmer andAllen 1949)

and the critical success index (CSI) (Donaldson et al.

1975). In a forecast skill score, the ‘‘hit’’ rate (or ‘‘correct

forecast’’ rate) will be unrealistically high if ‘‘correct nulls’’

(or correct rejections), which represent the cases that the

event occurs in neither observations nor forecasts, are

considered as correct forecasts. For this reason, correct

nulls are not counted as correct forecasts in the calculation

of skill scores. Similarly, in our analysis, the grid boxes in

which there exists neither observed nor simulated TC ex-

posure are invalid and thus are excluded from our calcu-

lation of skill scores. In other words, if there exists at least

one TC exposure at a given grid box in either observations

or simulations fromany of the 15models, then this grid box

is considered valid. Note that when comparing the simu-

lation of one specific model with observations, there might

exist cases in which the TC exposure from both observa-

tions and that specific model simulation is zero in a given

grid box. However, if the TC exposure in any of the other

model simulations (or in at least one model simulation) is

not zero in that grid box, then that grid box is still con-

sidered as valid. For example, when we calculate the DSI

of the CMCC, theremight exist a few grid boxes where the

TC exposure from both the CMCC and observations is

zero (m 5 0 and nCMCC 5 0) but it is not zero from sim-

ulations of the CSIRO or some other model (nCSIRO5 1).

This situation is also considered to be a correct forecast of

the CMCC, and DSI 5 1 in that grid point. The value of

DSI(i) over the entire region is calculated following the

approach described above, and the track DSI is the aver-

aged value of DSI(i) over all valid grid boxes.

b. Index of GPT

The k-means clustering is a method of vector quanti-

zation that aims to partition n observations into k clus-

ters in which each observation belongs to the cluster

with the nearest mean. In previous studies (e.g., Elsner

2003; Nakamura et al. 2009, 2017; Yu et al. 2016), the

k-means clustering has been used as an effective method

to classify TC type. Here we consider the modified

k-means method used by Nakamura et al. (2009) for TC

track classification. Following Nakamura et al. (2009),

the wind speed at each specific time and location of the

track is used as a weighting factor in the computation of

the centroid and variance ellipse of each individual TC

track. The centroid and variance ellipse are character-

istic variables that describe the TC track pattern, length,

and location. The mass moment, which contains five

elements—that is, the latitude and longitude of the TC

centroid; and the variances of the TC centroid along the

latitude, longitude, and diagonal directions—is used to

describe the geographical properties of a full TC track

such as its pattern and length in each of the clusters

determined by the k-means method.

The five track moments elements are first normal-

ized. The weights of the two elements associated with

the centroid and that of the other three elements as-

sociated with the variances at different directions are

set to 1/3 and 1/9, respectively, to relatively weaken the

effects of TC track length, pattern, and direction rep-

resented by the variances, and the cosine distance

metric is chosen as our distance metric. A detailed

description of the method can be found in Nakamura

et al. (2009, 2017).

The Nakamura k-means clustering is applied to the

observed best-track data to classify all TCs that occurred

during 1980–2005. The tracks are classified into k clus-

ters;Fs,i represents the fraction of simulated tracks in the

ith cluster and Fo,i is the actual fraction of tracks ob-

served in the ith cluster. The index of geographical

properties of the TC track (i.e., the accuracy of model in

simulating geographical properties of the TC track) can

be written as

GPT5 12

"
1

k
�
k

i51

(F
s,i
2F

o,i
)2
#1/2

. (2)

Note that GPT is merely the root-mean-square error of

the cluster fractions.

1810 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:39 PM UTC



c. CTI

Combining the TC track DSI and the index of GPT,

we can define the comprehensive track index (CTI) as

CTI5DSI3GPT. (3)

This definition of CTI as the product of DSI and GPT

requires that the models have skill to simulate both the

track density and the TC track characteristic, since both

are important and should not be ignored.

4. Evaluation of the performance of 15 models for
TC track simulations over the WNP

a. Comparison of TC track density between
observations and simulations

To intuitively compare the difference of TC tracks

between observations and simulations, Fig. 1 shows the

TC track density distributions from observations and

simulations of CMIP5 and HWG models. Compared

with observations, the TC occurrence frequency over

the WNP is underestimated by most of the CMIP5

models (Figs. 1b–h). This bias is mainly attributed to the

low resolution of the CMIP5models, although detection

and tracking algorithms used to identify TCs may also

contribute to the bias as well (Horn et al. 2014; Walsh

et al. 2015). The TC track density distributions simu-

lated by the HWG models (Figs. 1i–p) are better than

those by the CMIP5 models, perhaps because of the

relatively higher resolutions. However, there are still

large differences between the HWG simulations and

observations. For instance, while the simulations of

CSIRO Mk3.6.0 (Fig. 1b) and HiRAM (Fig. 1p) are

relatively consistent with observations, the observed

maximum over the South China Sea is not simulated by

HiRAM and CSIRO overestimates its value. Moreover,

fewer TC occurrences are found in the HiRAM simu-

lation over the northeastern part of the WNP compared

with observations, which may be attributed to a shorter

life cycle (or shorter tracks) of the modeled TCs. In

addition, the values of TC track density in the CSIRO

and HiRAM simulations are larger than observed in the

low latitudes east of 1608E, which is due to the higher

rate of TC genesis in this region. The performance of

other models for the TC track simulation is even poorer.

For the HWG downscaled synthetic tracks (Figs. 1q–t),

the number of generated storms is fixed globally. There-

fore, the observations need to be compared with a nor-

malized frequency of TCs. There aremanyways to do that.

For instance, Lee et al. (2018) normalized the TC number

based on the tropical cyclone genesis index (Tippett et al.

2011).Herewenormalize theTCnumber by the frequency

of storm survival after being generated by the random

seeding method (Emanuel 2006) to obtain a TC track

density that is equivalent to observations. The calculation

is as follows. First, the number of storms during the

19 years listed in Table 1 in the WNP is divided by the

total global number of events for each simulation (i.e.,

8000) to obtain the percentage of storms in theWNP for

DCAM5, DCMCC, DGISS, and DHiRAM (37%, 36%,

35%, and 32%, respectively). Second, the frequency of

surviving storms in the WNP is obtained by multiplying

the mean number of the global events generated for

each model and every year by the percentages calcu-

lated in the previous step. Finally, the original track

density is normalized by multiplying by the quotient

obtained by dividing the number of storms in Table 1 by

the frequency values. Although the normalized TC track

density in the synthetic TC tracks is generally larger

than that in observations, they are more similar to the

observations than the HWG explicit models’ TC track

densities. The synthetic TCs correctly reproduce the

observed region of maximum track density, while the

HWG explicit TC track density generally does not.

However, in the northeastern portion of the WNP, the

synthetic TC track density is overestimated.

Although we have qualitatively analyzed the model

performance in simulating the TC track density, the

above discussion is affected by subjective factors. To

eliminate the influence of these subjective factors, we

have also quantitatively analyzed the TC track simula-

tions by all the models. The results are given in Table 1,

which lists the track density indices (DSI) of all 15

models based on the mean number of TCs. Among all of

the models, CSIRO, HiRAM, and FSU (17.65, 33.85,

and 28.6 separately) agree relatively well with observa-

tions (25.38) in the mean annual number of TCs, and the

simulated TC track density patterns are consistently

close to observations (Figs. 1b,k,p). The number of TCs

simulated by the IPSL (0.69) is the smallest in these

models and also the most distinct when compared

with observations. Meanwhile, the value of DSI is the

highest (0.49) for HiRAM and the smallest (0.17) for

IPSL-CM5A-LR among the explicit models (Table 1).

The above results reflect the relationship between TC

number and DSI. To further verify this point, the re-

lationship between the TC number andDSI is illustrated

in Fig. 2a, which shows that DSI is highly correlated with

the annual number of TCs simulated by each model and

the correlation coefficient between them is 0.76. In

general, the models’ DSI increases as the simulated

annual number of TC becomes closer to observations.

Models with high DSI values, such as CSIRO Mk3.6.0,

CMCC, and FSU (0.4 and higher), havemean number of

TCs closer to observations. Note that while HiRAM has
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the highest DSI value, its annual number of TCs is not

the closest to observations. Moreover, although CMCC

and HiRAM have very similar annual mean number of

TCs (33.67 and 33.85, respectively), their DSIs are dif-

ferent (0.42 and 0.49, respectively). Thereby, the value

of DSI is also influenced by other factors (e.g., TC

genesis position, TC lifetime).

As for the downscaledmodels (i.e.,DCAM5,DCMCC,

DGISS, andDHiRAM), we normalized TC track density

and calculated the DSI based on the normalized TC track

density. As shown in Table 1 and Fig. 2a, the DSI of

DCAM5 (0.52) is the highest among these models and is

significantly higher than that of its corresponding model

CAM5 (0.41). TheDSIs of the DGISS andGISS are very

FIG. 1. Observed and simulated TC track density distributions measured by the number of events per 28 3 28 grid box per year:

(a) observations (IBTrACS), (b)–(h) CMIP5 models, (i)–(p) HWG models, and (q)–(t) HWG downscaled models.
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similar, while theDSIs of theDCMCCandDHiRAMare

lower than that of CMCC and HiRAM. This indicates

that the downscaling method does not always improve

the model performance for the simulation of TC track

density.

b. Evaluation of the performance of 15 models on TC
track type simulation based on IBTrACS dataset

Results of the k-means clustering analysis of the

IBTrACS best-track data are shown in Figs. 3a–c,

which show the TC tracks, the average TC tracks, and the

starting points of individual TCs in each individual clus-

ters. We chose k 5 3 for three reasons. First, the three

patterns of TC track are very simple and straightforward;

second, several previous studies have classified TC tracks

into three track types, that is, westward, northwestward,

and recurving (Elsner 2003;Wu andWang 2004;Wu et al.

2005; Ying et al. 2011); third, for some models that sim-

ulate only a low number of TCs, three types of TC tracks

may be more appropriate than a higher number of clus-

ters, because the k-means clustering analysis is a hard

clustering method, and there are potential uncertainties

in the resulting clusters because of the random selection

of initial centroids. However, multiple repetitive experi-

ments indicate that the resulting clusters are robust for

k 5 3; that is, no matter how the initial centroids are

FIG. 2. (a) Scatterplot of the DSI vs TC number (per year) for 15 explicit models and

4 downscaled models. The horizontal line denotes DSI5 0.4, and the vertical line represents

the observed TC number (25.38). (b) Scatterplot of CTI vs model resolution for 15

explicit models.
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chosen, a very high percentage of individual TCs are

classified into the same specific cluster with the same

centroid. This result indicates that the method proposed

can be used to evaluate the performance of TC simula-

tions in climate models.

TCs in cluster A (Fig. 3a) are usually active in the

southern part of the WNP, and they tend to move

westward (with no TCs moving past 408N), eventually

making landfall in the Philippines, China, or Vietnam.

TCs in cluster B typically move westward and make

FIG. 3. TC tracks, initial positions, and mean tracks in three k-means clusters [track types (left) A, (center) B, and (right) C] for

(a)–(c) observations (IBTrACS) and (d)–(l) three models (HiRAM, CMCC, and FGOALS-g2). The text box in the upper left-hand

corner of each panel represents the percentages for each cluster.
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landfall in Japan and the Korean Peninsula (Fig. 3b),

affecting the East China Sea. TCs in cluster C typically

have genesis east of the Philippines and move north-

westward before turning northeastward at around 208N
(Fig. 3c), with some TCs affecting Japan and the Korean

Peninsula.

Because of the large number of models, here we only

show the tracks of three explicit models that produce

large, medium, and small TC numbers, respectively

(Figs. 3d–l). A model TC track is assigned to the

nearest cluster using the distance metric. While the

HiRAM TC frequency is close to the observed, there

exists significant differences between the percentages

of TCs assigned to specific clusters when compared

with observations. From observations, there are more

TCs in clusters A (50%) and C (36%) than in cluster B

(14%); for HiRAM, however, the percentage of TCs in

cluster B (22%) is close to that in cluster C (30%).

Similar issues are found for TCs simulated by CMCC

(46%, 22%, 32%, respectively), which has a bias in the

simulated TC number. It is interesting to note that,

while the total number of TCs simulated by FGOALS-g2

is also very small, the percentages of TCs in the three

clusters (51%, 14%, 34% for clusters A, B, C, re-

spectively) are more consistent with observations than

those from the CMCC simulation. To quantitatively

evaluate the model performance for simulating the

geographic properties of TC tracks, we calculate the

GPTs of all models in the present study (Table 2).

The GPTs of the downscaled models (0.83, 0.78, 0.79,

0.82 for DCAM5, DCMCC, DGISS, DHiRAM, re-

spectively) are higher than their corresponding explicit

models (0.73, 0.76, 0.74, 0.77 for CAM5, CMCC, GISS,

HiRAM, respectively), especially DCAM5, for which

the normalized annual number of downscaled TCs is

closer to the observations. Although it might appear that

GPT may be related to the simulated TC number, this

relationship does not hold in the explicit models. Among

the explicit models, FGOALS-g2 has the best GPT

performance, with a value of 0.88, although it only

produces 1.35 TCs per year (Table 1). The annual TC

number produced by FSU (28.6) is the closest to the

observation (25.38) among all the models, whereas its

GPT (0.83) ranks fourth. In addition, the GPT for

CMCC (0.76) is smaller than that for FGOALS-g2,

which is consistent with the qualitative analysis of the

percentage of TCs per cluster above. Overall, the skill

of HiRAM for partitioning the WNP TCs among dif-

ferent track types is not optimal although its TC fre-

quency is close to observations. On the other hand,

FGOALS-g2 shows the highest GPT score despite its

relatively poor performance in simulating the TC

number. Thereby, as expected, the GPT index is

sensitive only to the percentage of total TCs in each TC

track cluster and is not sensitive to the number of TCs,

and the correlation coefficient between TC numbers and

GPT is only 0.18.

c. Comprehensive evaluation of 15 climate models
simulating TC track

The comprehensive index CTI combines the TC track

density (i.e., DSI) and TC track properties (i.e., GPT).

Table 2 indicates that, among the explicit models, the

CTI of HiRAM is the highest (0.37), followed by that of

CSIROMk3.6.0 (0.34) and FSU (0.34). Thesemodels all

have relatively better ability for simulating the TC track

density (i.e., relatively higher DSI) and TC track prop-

erties (i.e., relatively higher GPT). FGOALS-g2 has the

highest GPT but a CTI of only 0.16 because of its poor

performance in simulating TC track density (i.e., rela-

tively lowerDSI). A high CTI indicates a proper balance

of high DSI and GPT. Among the downscaled models,

the CTI of DCAM5 is the highest (0.43) and is higher

than all explicit models. For GISS, the CTI has similar

values for the explicit and downscaled TCs, while the

CTIs of DCMCC and DHiRAM are lower than their

corresponding models. Therefore, among the explicit

models, HiRAM has the highest resolution and shows

TABLE 2. Skill scores of 15 models verified against observations

(IBTrACS). The observational dataset or model name, percent-

age of TC track types in each cluster, index of geographical

properties of TC track, and comprehensive index of TC track

properties are given in individual columns. Models in boldface

type are discussed inmore detail in the text as representative. The

first row indicates observations, and the last four rows indicate

downscaled models.

Model

Cluster

A (%)

Cluster

B (%)

Cluster

C (%) GPT CTI

IBTrACS 50 14 36

HiRAM 48 22 30 0.77 0.37

CSIRO Mk3.6.0 45 18 37 0.82 0.34

FSU 45 18 36 0.83 0.34

CMCC 46 22 32 0.76 0.32

CAM5 41 24 35 0.73 0.30

HadGCM3MR 48 19 33 0.80 0.30

MRI 52 17 32 0.82 0.29

GFS 50 17 33 0.85 0.23

GFDL CM3 58 13 29 0.77 0.22

MPI-ESM-LR 53 22 32 0.77 0.19

GISS 45 24 31 0.74 0.18

FGOALS-g2 51 14 34 0.88 0.16

CanESM2 55 13 31 0.81 0.15

MIROC5 45 24 31 0.74 0.13

IPSL-CM5A-LR 61 6 33 0.73 0.12

DCAM5 51 17 32 0.83 0.43

DHiRAM 49 18 33 0.82 0.25

DCMCC 47 21 32 0.78 0.23

DGISS 47 20 33 0.79 0.21
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the highest skill in simulating theWNP TC tracks, which

agrees well with the results of Strazzo et al. (2013) that

HiRAM matches well with observations over the WNP

in termsof the area coveredbyTC tracks. IPSL-CM5A-LR,

which is the model with the lowest resolution, also has

the lowest skill. Consistent with the results of Nakamura

et al. (2017), the performance of a given model in sim-

ulating the TC track improves as the model resolution

increases. To further investigate this issue, we present

Fig. 2b, which shows the relationship between model

performance andmodel resolution. As model resolution

increases, in general, themodel’s CTI also increases, and

their correlation coefficient is 20.69. Apart from the

model resolution, the number of TCs also plays an im-

portant role in simulating the TC track density and af-

fects the model performance (Fig. 2a). Furthermore, for

climate models that underestimate the number of TCs,

the downscaling method can greatly improve the model

performance (e.g., CAM5).

5. Conclusions and discussion

Anewmethod to evaluate the skills of climate models

in simulating TC tracks is proposed in this study. This

method considers not only the TC track density but also

the TC track geographical properties using objective

skill scores. The WNP TC tracks by 15 models from

CMIP5 and HWG are compared with the IBTrACS

best-track data, using the comprehensive track index,

which consists of the TC track density simulation

index and TC track geographical properties index. Re-

sults indicate that, among the 15 explicit climate models,

HiRAM has the best performance in simulating the

WNP TC track density and IPSL-CM5A-LR has the

poorest performance; FGOALS-g2 has the best skill

score for TC track properties, followed by CMCC and

CSIRO Mk3.6.0. When these two indexes are consid-

ered together, HiRAM has the best performance, fol-

lowed by CSIRO Mk3.6.0 and FSU. Note that although

the explicit model CAM5 gets a low comprehensive in-

dex of TC track properties (i.e., CTI), its corresponding

downscaled model DCAM5 performs very well in sim-

ulating the TC track and the performance is even better

than of HiRAM. This result indicates that, for some

climate models (e.g., CAM5), the downscaling method

can improve the performance of models in simulating

TC tracks.

The objective of the present study is to propose a

straightforward method that can be used to quantita-

tively evaluate the skills of climate models in simu-

lating TC tracks. Namely, by using the method, we

can provide a score (i.e., CTI) for each model and then

directly compare the skills of different models in

simulating TC tracks. Note that there are still some

shortcomings in this method. For example, the DSI of a

given climate model is sensitive to the choice of models

that we need to compare their abilities in simulating TC

track. Namely, the DSI of a given climate model in a set

ofmodelsmay differ from the score of the samemodel in

another set of models, because of the difference in valid

grid boxes when calculating DSI with Eq. (1). Mean-

while, the classification of TC tracks (i.e., GPT) may

change when the method is used in different areas and/or

is based on different observed TC best-track datasets.

As a result, the absolute values of DSI and GPT, and

thus CTI, are sensitive to the models analyzed, the se-

lected areas, and the observed TC best-track datasets.

Thereby, it is meaningless to analyze the absolute value

of CTI of a given model, but we can rank the selected

models by comparing the CTIs of models. Although

this method is not perfect and still needs improvement,

it is a first attempt to shed light on this issue. For in-

stance, some advanced cluster analysis may be more

appropriate than the k-means clustering analysis in

calculating GPT. In the future, we plan to explore ways

to assess the reliability of the method proposed in

this study.
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